TÉCNICAS in vitro PARA AVALIAÇÃO DE POTENCIAIS INIBIDORES DA BOMBA DE EFLUXO NORA EM Staphylococcus aureus: UMA BREVE REVISÃO

Authors

DOI:

https://doi.org/10.61164/rsv.v11i1.2814

Abstract

The use of antimicrobials revolutionized medicine, but excessive use has led to an increase in antimicrobial resistance (AMR), particularly in bacteria such as Staphylococcus aureus. The NorA protein, an efflux pump from the major facilitator superfamily (MFS), plays a crucial role in bacterial resistance by expelling antimicrobials from the cell, rendering them ineffective. This integrative review analyzes in vitro methodologies for evaluating efflux pump inhibitors (EPIs) that target NorA, highlighting their potential to restore therapeutic efficacy and control infections caused by multidrug-resistant S. aureus

Author Biographies

  • Ronaldo dos Santos Machado, UNIJUI

    Biomédico, professor de biomedicina.

     

  • Gustavo Pozza Silveira, UFRGS

    -

References

AHMAD, Adel Attia M. et al. Thymoquinone’potent impairment of multidrug-resistant Staphylococcus aureus NorA efflux pump activity. Scientific Reports, v. 14, n. 1, p. 16483, 2024. Disponível em: https://www.nature.com/articles/s41598-024-23456-7. DOI: https://doi.org/10.1038/s41598-024-65991-5

BIALVAEI, Abed Zahedi et al. Current methods for the identification of carbapenemases. Journal of Chemotherapy, v. 28, n. 1, p. 1-19, 2016. Disponível em: https://www.tandfonline.com/doi/abs/10.1179/1973947815Y.0000000029. DOI: https://doi.org/10.1179/1973947815Y.0000000063

CHANDAL, Nishtha et al. Efflux pump inhibitory potential of indole derivatives as an arsenal against norA over-expressing Staphylococcus aureus. Microbiology Spectrum, v. 11, n. 5, p. e04876-22, 2023. Disponível em: https://journals.asm.org/doi/10.1128/spectrum.04876-22. DOI: https://doi.org/10.1128/spectrum.04876-22

DE MORAIS OLIVEIRA-TINTINO, Cícera Datiane et al. The 1, 8-naphthyridines sulfonamides are NorA efflux pump inhibitors. Journal of Global Antimicrobial Resistance, v. 24, p. 233-240, 2021. Disponível em: https://www.sciencedirect.com/science/article/pii/S2213716521000252.

FELICETTI, Tommaso et al. New C-6 functionalized quinoline NorA inhibitors strongly synergize with ciprofloxacin against planktonic and biofilm growing resistant Staphylococcus aureus strains. European Journal of Medicinal Chemistry, v. 241, p. 114656, 2022. Disponível em: https://www.sciencedirect.com/science/article/pii/S0223523422007051. DOI: https://doi.org/10.1016/j.ejmech.2022.114656

FERRI, Maurizio et al. Antimicrobial resistance: A global emerging threat to public health systems. Critical Reviews in Food Science and Nutrition, v. 57, n. 13, p. 2857-2876, 2017. Disponível em: https://www.tandfonline.com/doi/full/10.1080/10408398.2015.1077192. DOI: https://doi.org/10.1080/10408398.2015.1077192

KUMAR, Gautam; TUDU, Asha Kiran. Tackling multidrug-resistant Staphylococcus aureus by natural products and their analogues acting as NorA efflux pump inhibitors. Bioorganic & Medicinal Chemistry, v. 80, p. 117187, 2023. Disponível em: https://www.sciencedirect.com/science/article/pii/S0968089623005634. DOI: https://doi.org/10.1016/j.bmc.2023.117187

LEAL, Antonio Linkoln Alves Borges et al. Potentiating activity of Norfloxacin by synthetic chalcones against NorA overproducing Staphylococcus aureus. Microbial Pathogenesis, v. 155, p. 104894, 2021. Disponível em: https://www.sciencedirect.com/science/article/pii/S0882401021000915. DOI: https://doi.org/10.1016/j.micpath.2021.104894

LOBANOVSKA, Mariya; PILLA, Giulia. Focus: drug development: Penicillin’s discovery and antibiotic resistance: lessons for the future?. The Yale Journal of Biology and Medicine, v. 90, n. 1, p. 135, 2017. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5394671/.

MEDINA, Eva; PIEPER, Dietmar Helmut. Tackling threats and future problems of multidrug-resistant bacteria. How to overcome the antibiotic crisis: facts, challenges, technologies and future perspectives, p. 3-33, 2016. Disponível em: https://link.springer.com/chapter/10.1007/978-3-319-48098-1_1. DOI: https://doi.org/10.1007/82_2016_492

Ministério da Saúde. DIRETRIZES METODOLÓGICAS PARA ELABORAÇÃO DE DIRETRIZES CLÍNICAS. 2ª ed. Editora, 2020. Disponível em: https://bvsms.saude.gov.br/bvs/publicacoes/diretrizes_metodologicas_clinicas.pdf.

MUNIZ, Débora Feitosa et al. In vitro and in silico inhibitory effects of synthetic and natural eugenol derivatives against the NorA efflux pump in Staphylococcus aureus. Food Chemistry, v. 337, p. 127776, 2021. Disponível em: https://www.sciencedirect.com/science/article/pii/S0308814620314991. DOI: https://doi.org/10.1016/j.foodchem.2020.127776

OLIVEIRA-TINTINO, C. D. M. et al. The 1, 8-naphthyridines sulfonamides are NorA efflux pump inhibitors. Journal of Global Antimicrobial Resistance, 2021; 24: 233–40. Disponível em: https://www.sciencedirect.com/science/article/pii/S2213716521000252. DOI: https://doi.org/10.1016/j.jgar.2020.11.027

PEREIRA DA CRUZ, Rafael et al. Effect of α-bisabolol and its β-cyclodextrin complex as TetK and NorA efflux pump inhibitors in Staphylococcus aureus strains. Antibiotics, v. 9, n. 1, p. 28, 2020. Disponível em: https://www.mdpi.com/2079-6382/9/1/28. DOI: https://doi.org/10.3390/antibiotics9010028

RAMPACCI, Elisa et al. Inhibition of Staphylococcus pseudintermedius Efflux Pumps by Using Staphylococcus aureus NorA Efflux Pump Inhibitors. Antibiotics, v. 12, n. 5, p. 806, 2023. Disponível em: https://www.mdpi.com/2079-6382/12/5/806. DOI: https://doi.org/10.3390/antibiotics12050806

SOWOLE, Luciana; MING, Damien K.; DAVIES, Frances. Multidrug-resistant bacteria. British Journal of Hospital Medicine, v. 79, n. 5, p. C66-C69, 2018. Disponível em: https://www.magonlinelibrary.com/doi/full/10.12968/hmed.2018.79.5.C66. DOI: https://doi.org/10.12968/hmed.2018.79.5.C66

THAMILSELVAN, Gopalakrishnan et al. Development of an antibiotic resistance breaker to resensitize drug-resistant Staphylococcus aureus: In silico and in vitro approach. Frontiers in Cellular and Infection Microbiology, v. 11, p. 700198, 2021. Disponível em: https://www.frontiersin.org/articles/10.3389/fcimb.2021.700198/full. DOI: https://doi.org/10.3389/fcimb.2021.700198

UBUKATA, K.; ITOH-YAMASHITA, N.; KONNO, M. Cloning and expression of the norA gene for fluoroquinolone resistance in Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, v. 33, n. 9, p. 1535-1539, 1989. Disponível em: https://journals.asm.org/doi/abs/10.1128/AAC.33.9.1535. DOI: https://doi.org/10.1128/AAC.33.9.1535

Published

2024-10-30

How to Cite

TÉCNICAS in vitro PARA AVALIAÇÃO DE POTENCIAIS INIBIDORES DA BOMBA DE EFLUXO NORA EM Staphylococcus aureus: UMA BREVE REVISÃO. (2024). Revista Saúde Dos Vales, 11(1). https://doi.org/10.61164/rsv.v11i1.2814